
A

brief introduction to

Anubadok
The Bengali Machine Translator

অনুবাদক
᏾য়ংিጂয়ভােব ইংেরজী েথেক বাংলায় অনুবাদ করার জনጁ একিট কিᎤউটার সফটওয়ጁার িসেᏓম

by
Golam Mortuza Hossain

Work in progress: Version July 8, 2008

Please send your comments to gmhossain@gmail.com

Copyright c© 2008, Golam Mortuza Hossain <gmhossain@gmail.com>.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0
License

2

"Anubadok: The Bengali Machine Translator" is a computer software system for performing ma-
chine translation of English texts into Bengali. Anubadok literally means the one who translates in
Sanskrit. The word has the same meaning also in Bengali and is scripted as "অনুবাদক". The Anubadok
system is written in a dynamic programming language known as Perl. Perl provides ease of use for text
manipulations and it has quite mature support for processing of Unicode encoded text. These were the main
reasons for choosing Perl as the preferred programming language. For internal processing of English texts,
Anubadok uses the so-called Penn Treebank annotation system for part-of-speech tagging. Penn Treebank
system annotates texts by a set of different tags for different parts of speech. Anubadok system writes out
translated documents as Unicode encoded Bengali texts.

License of Anubadok System:
Anubadok system is free software and distributed under the terms of GNU General Public License v2+.

Basics
It is easiest to consider explicit examples for exploring the internal working of Anubadok system. For
definiteness let us consider the following English sentence:
• I am reading a book.

This sentence has "I" as subject, "am reading" as verb, and "a book" as object. We should note that the
subject (S) is followed by the verb (V) which is then followed by the object (O). For this reason, structure
of basic English sentences is often mentioned as having S-V-O pattern. On the other hand, in Bengali the
given sentence is translated as
• আিম একিট বই পড়িছ।

In this Bengali sentence, "আিম" (I) is the subject (S), "একিট বই" (a book) is the object (O) and "পড়িছ" (am
reading) is the verb (V). We may note that in contrast to English sentences, basic Bengali sentences follow
the so-called S-O-V pattern. Thus, a simple word-for-word translation method for translating English texts
into Bengali doesn't work. Let us now use Anubadok to perform machine translation of the sentence. The
simplest way to use Anubadok (without installing the machine translator package in the system) is to run
the following command in a terminal inside Anubadok package directory
~$ echo "I am reading a book." | ./bin/anubadok

আিম একিট বই পড়িছ।

Here "echo", a command in unix-terminal, passes the sentence to "anubadok" which is one of the top level
executables of Anubadok system. Anubadok then processes the English sentence and prints out the trans-
lated Bengali sentence as Unicode encoded texts.

Machine Translation
In performing machine translation of English text documents into Bengali, the Anubadok system uses four
logically different steps. These steps are

3

1. Pre-processing of English documents.
2. Parts of speech (POS) tagging of pre-processed documents.
3. English to Bengali translation of POS-tagged documents.
4. Post-processing of translated documents.

These steps themselves are composed of several logical sub-steps. In the following sections, these steps are
descibed in more details.

Pre-processing of English documents
In today's computer system a document file consists of not only its contents but often it contains some
internal informaton that are used by client programs either to understand the structure of the document or
to understand how to display the document on screen. For example, consider the following element of an
HTML document:
I am reading.

In this HTML element, the actual contents are "I am reading." where as "" is a starting
tag along with an attribute color and its value red. This informaton instructs a client program to display
the contents upto "" using red color. Naturally to translate a document file, the translator needs
to understand the internal structure of the given document. Otherwise, translated document could become
incomprehensible to a client program. For example, if a translator also translates the words "font", "color"
and "red" then a web browser will fail to display this element properly.

The Anubadok system can handle several kinds of documents as input including plain text files, any
XML documents, HTML files with in-line javascript, CSS. Apart from these, Anubadok is also capable
of translating Portable Object (PO) files. In pre-processing step Anubadok basically convert all kinds of
documents into XML documents. However, this convertion preserves all structural informaton in special
forms. This informaton is restored at the post-processing stage. For the above example element, pre-
processing stage of Anubadok system protects all structural informaton and exposes only its contents "I
am reading." to the machine translator.

Part-of-Speech (POS) tagging
Parts of speech tagging is one of the most crucial steps in a machine translation sequence. In this step three
different morphological analysis of a given English documents are performed. In the first stage, the entire
English document is tokenized which is used for parts of speech tagging in the next stage. The tagged
document is then lemmatized by a lemmatizer in the last stage. Anubadok system itself does not perform
parts of speech tagging of an English document. Rather it relies on external program for POS-tagging.
Anubadok uses Penn Treebank annotation system for internal processing. So in principle, it can work with
any Penn Treebank tagger.

Anubadok by default uses GPoSTTL which is an enhanced version of Eric Brill's rule-based Parts-of-
Speech Tagger. This tagger has built-in Tokenizer and Lemmatizer. Anubadok can also work with Tree-
Tagger which is a probabilistic parts of speech tagger developed by Helmut Schmid. TreeTagger can be

4

used with Anubadok system for non-commerical translation under a license agreement with the author of
TreeTagger. However, given its non-free nature TreeTagger is not a preferred tagger for general purpose
translation with Anubadok system.

To illustrate the working of a parts of speech tagger, let us perform morphological analysis of our
example sentence using GPoSTTL. As earlier, the sentence can be passed to the tagger by using the echo
command in a terminal as
~$ echo "I am reading a book." | gposttl
GPoSTTL (Ver. 0.9.1): Tagging...
I PP i
am VBP be
reading VVG read
a DT a
book NN book
. SENT .
GPoSTTL: Done

In the tagger output above, one may note that the tagger has broken the given sentence into six parts which
are called tokens. These six tokens are "I", "am", "reading", "a", "book" and ".". First token is tagged
as "PP" which stands for personal pronoun. Here "PP" is an element of the tagset that is used in the
Penn Treebank annotation system. Second token is tagged as "VBP" which stands for verb (be), present
tense. Third token is tagged as "VVG" (verb, continuous). Forth and fifth tokens are tagged as "DT"
(determiner) and "NN" (noun, singular). The last token is tagged as "SENT" which means sentence
boundary. We may also note here that the tagger can determine the base form of the verb "reading" as
"read". We will see in the next section that the base form of a verb, known as lemma plays an important
role in synthesizing translated Bengali sentences.

Translation of tagged English documents.
This is the step where actual translations are performed by Anubadok. Given this step follows the parts-of-
speech tagging step, it has access to the English documents which are both tagged and lemmatized. Access
to tagged and lemmatized English documents is essential for performing machine translation in Anubadok
system. The translation step is composed of several logical sub-steps. The fewmain sub-steps are described
in the following sub-sections.

Sentence type determination
In this logical step, Anubadok determines the properties of a given sentence by looking at the Penn tags of the
tokens in the sentence. In particular, it determines whether it is a Declarative, Imperative, Interrogative or
Exclamatory sentence. By default, Anubadok treats a sentence as being Declarative unless it is determined
otherwise.

Subject, Object and Verb determination
In the next logical step, Anubadok determines subject, object and verb of a given English sentence. The
given example sentence "I am reading a book.", has "I" as subject, "am reading" as verb, and "a book" as

5

object.

Tense determination
In English, tense forms of a sentence are indicated by the presence of auxiliary be verbs (am, is, are, was...)
and have verbs (has, have, had) along with the forms of main verbs. On the other hand in Bengali, tense
forms are encoded in the modification of the main verbs as there are no auxiliary verbs in Bengali. Thus it is
very crucial to determine the tense forms of a English sentence accurately. Tense information is then used
to generate the final forms of Bengali main verbs from the root verbs (base form). Anubadok determines
tense forms of an English sentence, from the Penn tags of the verb tokens. In the example sentence, the verb
part contains two tags "VBP" and "VVG". The first tag VBP indicates present tense where as the second tag
VVG implies the tense form to be continuous. Together they determine the tense of the example sentence
as being present continuous.

Subject and object translation
Having determined subject, object and verb of a sentence, Anubadok proceeds to translate subject, object
and verb separately. During subject translation, Anubadok determines the person of the sentence. For
the example sentence "I" (personal pronoun) is the subject and consequently the person is determined to
be first person. By default, Anubadok sets the person to be third person. To construct the subject in
Bengali, Anubadok makes dictionary lookup for the word "I" in its English to Bengali dictionary database.
Anubadok employs the same algorithm for translating object. In the situation where person of the sentence
is not determined from the subject, Anubadok tries to guess the person from the object. To construct the
object of the example sentence in Bengali, Anubadok needs to make two dictionary lookup for the words
"a" and "book".

Verb translation
While translating verbs, Anubadok leverages the power of the fact that Bengali derives its inheritance from
Sanskrit. In Bengali, final forms of verb can be generated by knowing the base form of the verb (root
verb), the person, the tense forms and whether verb is active or passive. We will see here that generation
of final verb forms in Bengali has striking similarity with linear algebra in abstract mathematics. More
precisely, construction of final verb forms in Bengali can be viewed as a method of multiplication between a
scalar quantity and amatrix. In this analogy, all final verb forms can be viewed as the elements of resultant
matrix from the product between scalar root verb (base form) and an universal matrix containing all verb
modifier suffixes as its elements. The suffix matrix is universal in a sense that all verb forms for all tense
can be generated from this matrix. Their product rules can be defined using the rules of joining words,
the juncture rules which are known as Sondhi (সিᎈ).

We now discuss how Anubadok system implements this abstract notion of verb form generation. Let us
consider the situation, relevant for our example sentence which has "am reading" as verbs. It has two verbs:
"am" with lemma "be" and "reading" with lemma "read". Here verb is acting actively. While constructing
Bengali verb Anubadok ignores auxiliary verbs such as "am" here. To construct the final verb form in
Bengali, Anubadok first performs a dictionary lookup for the lemma "read" whose base form in Bengali is
"পড়". Then it looks up for the element in the suffix table corresponding to present continuous tense, first
person and active verb. The corresponding suffix element in Bengali is "িছ". Other elements in the suffix

6

Table 1: Verb modifier suffix table for first person when verb is active

Simple Continuous Perfect Perfect Continuous
Present ি◌ িছ ে◌িছ িছ
Past ে◌িছলাম িছলাম ে◌িছলাম িছলাম
Future ব ব ব ব

table for such situations are given in the Table 1. Having known the base form of the verb and relevant
suffix, Anubadok joins them following the juncture rules. In particular, for this example final Bengali verb
"পড়িছ" is generated as

পড় � িছ → পড়িছ .

For this example, the rule of joining is rather trivial. However, for many situations the joining rules can be
quite involved. Generations of final verbs for all tense forms with subject being first person and verb being
active, are illustrated below. পিড় পড়িছ পেড়িছ পড়িছ

পেড়িছলাম পড়িছলাম পেড়িছলাম পড়িছলাম
পড়ব পড়ব পড়ব পড়ব

 = পড় �

 ি◌ িছ ে◌িছ িছ
ে◌িছলাম িছলাম ে◌িছলাম িছলাম

ব ব ব ব


Above verb form generating equation can be abstractly written as

Final verb forms matrix = Root verb form�Universal suffix matrix ,

where a part of "Universal suffix matrix", relevant for first person, is illustrated in the Table 1. This
aptly demonstrates the structural advantages for machine synthesis of Bengali sentences. These underlying
structures owes to the fact that Bengali derives its origin from Sanskrit.

Construction of final Bengali sentence
Having constructed Bengali subject, object and verb separately, Anubadok joins them together to form
the final Bengali sentence in the S-O-V order. At the end punctuation marks are also translated. For the
example sentence, "আিম" (I), the subject (S), "একিট বই" (a book), the object (O) and "পড়িছ" (am reading), the
verb (V) are joined together to form the final Bengali sentence "আিম একিট বই পড়িছ।".

Post-processing of translated documents
The post-processing stage is the last stage before Anubadok writes out the translated final output. In this
stage, it reverts the changes that were made in pre-processing stage to preserve certain formatting informa-
tion of the documents. In particular, for an XML document, tags and attributes those were protected during
translation stages, are restored into the standard forms at the end of this stage.

7

Implementation in Perl
In this section, we consider a simple Perl program which can be used to translate an XML document using
Anubadok. This program also illustrates the usage of Anubadok modules in a Perl program.

#!/usr/bin/perl

use strict;
use encoding "utf8";

use Anubadok::XMLPP;
use Anubadok::PoSTagger;
use Anubadok::Translator;

print STDOUT
XMLPP::xml_post_processor(

Translator::translate_in_bengali(
PoSTagger::penn_treebank_tagger(

XMLPP::xml_pre_processor(<STDIN>))));

The first line of the the Perl script contains #!/usr/bin/perl which specifies how to execute the pro-
gramming instructions contained in the file. In particular, it specifies where to find the Perl interpreter in
the machine. In this example program, Perl is located at /usr/bin/perl. However, it does not have to be
in the same location for every machine. Next few lines of the program begin with the Perl directive "use".
It tells Perl interpreter to load the mentioned Perl module. To translate an XML document using Anubadok,
one needs to load at least three Anubadok modules which are Anubadok::XMLPP, Anubadok::PoSTagger
and Anubadok::Translator.

As mentioned earlier, translation of an XML document in Anubadok system is performed in four steps.
First step is performed by calling the subroutine XMLPP::xml_pre_processor(). In the example Perl
program here, this subroutine reads from standard input STDIN. The output of this subroutine is then
passed as input of the next subroutine PoSTagger::penn_treebank_tagger(). This subroutine per-
forms the parts of speech tagging of pre-processed documents. The tagged output is then passed to the
subroutine Translator::translate_in_bengali(). Output of translation step is then post-processed
by subroutine XMLPP::xml_post_processor(). Final translated output is then printed to standard out-
put STDOUT.

8

References:
Anubadok website

http://anubadok.sourceforge.net/

GPoSTTL website

http://gposttl.sourceforge.net/

Brill Tagger

http://en.wikipedia.org/wiki/Brill_tagger

TreeTagger

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

Penn Treebank Project

http://www.cis.upenn.edu/~treebank/

Ankur English to Bengali dictionary

http://www.bengalinux.org/english-to-bengali-dictionary/

